
©2020 RSA Security, LLC., a Dell Technologies business

"Light, Dark and… a Sunburst:
Dissection of a very sophisticated attack”

Who we are: Stefano
• I am a Senior Principal Consultant for Incident

Response and a leading figure of the RSA IR Team.

• I begun my ICT career in 1997 in Digital Corp, but I
started to crack software in 1985 with a
Commodore C64…

• I decided to get out of the cracking scene in 2000
and for about three years I remained focused on
Networking and System administration… until
Nimda and Blaster came out and testing network
and system security became an interesting
career…

• I worked on the testing and offensive side until
2009 when I jumped into the IR bandwagon.

• Since then I got busy with engagement around the
world… covering investigation in banks, military,
governments and telco companies.

Who we are: Alessandro

• Today: EMEA Incident Response Consultant @ RSA

• Past: 22 years of experience

• Love hunting and intelligence

• A proud dad and happy husband

Sunburst:
the story, the tools, the IOCs

In the beginning it was Fireeye…

Our story begins on December 8th 2020, when Fireeye publicly states on a post in her website
that she was targeted by a sophisticated actor.

In addition, the attacker stole specific tools:

The attacker focused on specific
Customers data, in particular that
the Governmental Agencies:

Since the beginning the
hypothesis was about a

«State-sponsored Attacker»
…

https://github.com/fireeye/red_team_tool_countermeasures

Fireeye promptly gave IOCs to identify and track the attacker,
his malicious tools and the attacker TTPs in a Github:

In the beginning it was Fireeye…

Then we went hit by… a Sunburst!

But, when we started realizing the attack against Fireeye, the entire Security
community founded that a bigger plan was unfolding, a huge and highly
sophisticated attack: SUNBURST.

Fireeye was just the last of a number of targets in a campaign initially led
against Solarwinds, a Company developing a widely used network monitoring
tool known as: Orion. In fact Orion was initially compromised to extend the
attack to the rest of the targets.

• Sunburst is a “Supply-chain” attack.
• It is a global scale campaign.
• It is highly sophisticated.

The attacker injected a piece of malicious
code in a specific SolarWinds Orion update

compromising every system that went
updated with it.

Courtesy of SolarWinds Inc.

Initial
access to

SolarWinds
network

Attacker
injects test

code
And begins

trial run

Test code
Injection

ends

SUNBURST
compiled and

deployed

Hotfix 5 DLL
available to
customers

Attacker
found in
Fireeye
systems

SolarWinds
notifies

customers of
the breach

SolarWinds
notified of
SUNBURST

4/09/2019 12/09/2019 4/11/2019 20/02/2020 26/03/2020 8/12/2020

12/12/2020

14/12/
2020

15/12/2020

Customers exposure timeAttacker initial phase

Critical phase for detection
on Orion software

SolarWinds
releases software

fix

Attack Timeline and consequences

These are the compromised releases of SolarWinds Orion:

SUNBURST: some details…

• Orion Platform 2019.4 HF5, version 2019.4.5200.9083
• Orion Platform 2020.2 RC1, version 2020.2.100.12219
• Orion Platform 2020.2 RC2, version 2020.2.5200.12394
• Orion Platform 2020.2, 2020.2 HF1, version 2020.2.5300.12432

Sunburst is a backdoor under the guise of a DLL:

• SolarWinds.Orion.Core.BusinessLayer.dll

It is signed by SolarWinds and the standard instructions for
Orion setup recommend to put it and the other components in
the system’s whitelist.

Because of these reasons, the backdoor was facing very limited
chances of being traced by Antivirus and HIPS/HIDS/EDR solutions.
In addition, the backdoor itself included in its code a number of
tricks to hide it from prying eyes…

Thanks to the initial Fireeye investigations, the SolarWinds breach unfolded very quickly
and showed its magnitude.
In the Fireeye breach, as we learned with the successive investigations, the attacker
used Sunburst as initial step and then resorted to installing other malware like
CobaltStrike to move laterally extending his control upon the breached infrastructure.

Collectively, the following malware families have been identified:

SUNBURST: the other tools

• Teardrop
• Raindrop
• Supernova
• CobaltStrike Agents (Beacons)

Let’s go deeper

Sunburst: Compromise mechanism

Sunburst: Compromise mechanism

Sunburst: Compromise mechanism

Sunburst: Compromise mechanism

SUNBURST: summary of its activation process.

Sunburst was directly downloadable from SolarWinds website as update of Orion Software.
At the end of the update process, once the main component is executed:

A number of plug-ins are loaded such as the DLL containing the backdoor:

Inside, there is a class instanced:

Which implements the backdoor.
The execution of the backdoor is carried out by the following routine:

connected with SolarWinds Inventory Manager of Orion, a component loaded as the program starts up.
The execution of the backdoor is tied with a number of initial controls integrated in the malware to
protect it from potential discovery.

SolarWinds.BusinessLayerHost.exe

SolarWinds.Orion.Core.BusinessLayer.dll

SolarWinds.Orion.Core.BusinessLayer.OrionImprovementBusinessLayer

SolarWinds.Orion.Core.BusinessLayer.BackgroundInventory.InventoryManager.RefreshInternal

SUNBURST: evasion

Sunburst is a very sophisticated piece of
malware with remarkable abilities to hide and
protect itself.
When executed it performs several checks,
the first is to verify if it has been launched on
a machine inside the SolarWinds network.
This check is made by verifying the hostname
and Domain of the machine, against a set of
predetermined hashes belonging to
SolarWinds networks and compared at
runtime.

This is the routine that call the list of
Solarwinds networks stored as hashes.

During the execution, the backdoor checks additional System variables (ANTIS) making the Dynamic
Malware analysis via Sandbox unreliable.
While these checks are frequent in sophisticated malware, the number of them and the careful
progression of their execution in one single backdoor is unlikely seen before.

SUNBURST: behavior…

To successfully integrate the malware in the Orion suite, the attacker has been forced to inject his
code by altering legitimate functions.
For this reason, during the execution, the backdoor must interact with the following methods:

These methods access an XML-like file called appSettings where Orion writes parameters to keep
track of error at startup. These parameters are managed by, an API used to check the previous
executions of Orion:

These values are verified by the legitimate application during its initial execution cycle.
The backdoor, in the initial phase of Orion startup, uses these values as persistence parameters polled
by ReportWatcherRetry key where the potential values can be anything from 1 to 4, but counting 3

as an exception that forced the backdoor activation routine to stop.
This highlights once more the sophistication of the attacker.

SolarWinds.Orion.Core.BusinessLayer.dll.config

ReportWatcherRetry
ReportWatcherPostpone

The following SolarWinds components were affected by the attacker:

The malicious code was inserted in the “RefreshInternal” method and invoked upon execution by the main
executable: “SolarWinds.BusinessLayer.Host.exe.

This is another significant aspect to consider.

Instead of launching the backdoor through the canonical “Start” which results in immediate activation,

increasing the chance of being detected, the attacker has bounded the malware with a necessary but
subsequent process: the refresh, which runs with a significant delay.

Notably, if we consider how the method RefreshInternal is integrated in the backdoor execution flow, we

can consider it “functional” not only to the delay of the backdoor execution but to the control of its status as
well.

SolarWinds.Orion.Core.BusinessLayer.OrionImprovementBusinessLayer.Initialize

SolarWinds.Orion.Core.BusinessLayer.BackgroundInventory.InventoryManager.RefreshInternal

SolarWinds.Orion.Core.BusinessLayer.BackgroundInventory.InventoryManager.Refresh

SolarWinds.Orion.Core.BusinessLayer.BackgroundInventory.InventoryManager.Start

SolarWinds.Orion.Core.BusinessLayer.CoreBusinessLayerPlugin.ScheduleBackgroundInventory

SolarWinds.Orion.Core.BusinessLayer.CoreBusinessLayerPlugin.Start

SUNBURST: technical considerations

SUNBURST: behavior…

The activation checks are not over yet…
Once the status Report key check has been passed, the malware runs a query to enumerate the
drivers loaded onto the System via a WMI query with this logic:

The result is compared with a blacklist internal to the backdoor code where a number of drivers
belonging to Security solutions such as Antivirus and EDRs is stored, decrypted at runtime.
In presence of a Security driver installed, the appSettings XML file is updated with a value of 4, a
backdoor routine modifies the registry key of the driver unloading it and the backdoor setup exits
without errors.
This postpone the activation to a subsequent launch of Orion, but more importantly, on the next setup,
the «hostile» Security driver will be not active.
Instead, on successful check of System drivers, the backdoor setup is completed and the malware will
check Internet by querying the DNS resolution of :

api.solarwinds.com

Select * From Win32_SystemDriver

This is the entire list of controls carried out by backdoor prior to activate itself onto a system:

Sequence Detection mechanism

1 Determine the current load malicious by hash DLL The name of the process is solarwinds.businesslayerhost.exe

2
The malicious DLL checks its last write time against the current time and verifies the amount of time passed.
It means that it will be dormant for about half a month before implementation.

3
Check hard coded named pipe: 583da945-62af-10e8-4902-a8f205c72b2e.
This avoids repeated execution of multiple processes of the same backdoor.

4
Check configuration options for malicious reuse ReportWatcherRetry, ReportStatus
Item cannot be 3, namely Truncate Exit state is matched forcing the execution to exit.

5

Check the domain of the current device.
The domain name is compared against a blacklist of domains saved as hardcoded hashes in the backdoor.
The domain name cannot match the regular expression “(?i)([^a-z]|^)(test)([^a-z]|$)”.
This expression is mainly used to check whether the current domain name is the domain name for testing ;"(?i)(solarwinds)“. This
means the malware detect whether it is executed inside Solarwinds offices and exit execution.

6 Check the first non loopback enabled NIC , be not in IP Blacklist.

7
Detection process Hash.
The blacklist (contain about 137 processes), ensure that there are no security related software and services in the current
environment , such as ：Windbg, Autoruns, Wireshark, etc… and try to close the service in the service list

8 Check if there is a driver for security applications such as ：groundling32.sys

9 It checks the availability of “api.solarwinds.com” to proceed to communicate with its C2s.

SUNBURST: Evasion

SUNBURST: Network checks

Through the setup process, Sunburst will generate an A DNS record, that will be checked against
a blacklist of addresses encoded in its configuration and illustrated below:

The presence of a match terminates immediately the
backdoor process and a key with value of 3 will be saved
in a Orion configuration XML file by polling a Orion
watcher:

This value (3) will block any further activation of the
backdoor. This value is checked at the beginning of any
backdoor setup process.

ReportWatcherRetry

If the check return no matches, a new thread will be
launched calling:

Activating the DGA and preparing for the C2
communication.

HttpHelper.Initialize

10.0.0.0/8
172.16.0.0/12
192.168.0.0/16
224.0.0.0/3
fc00:: - fe00::
fec0:: - ffc0::
ff00:: - ff00::
20.140.0.0/15
96.31.172.0/24
131.228.12.0/22
144.86.226.0/24

Microsoft
IP address spaces

SUNBURST: DGA…
Sunburst leverages on DGA (Domain Generation Algorithm) to communicate with its C2.
During the setup, the backdoor applies the DGA to generate the hostname, a unique identified that will be
used to check to its C2. To do that it goes through these steps:

Once the fourth step is completed, the hostname will be added to four DNS records generated by DGA.
The DNS records will include the Domain and will be composed by the following structure:

The “region” field has the following values:

${GUID:16byte}${Encoded_AD_domain}.appsync-api.${region}.avsvmcloud.com

eu-west-1
us-west-2
us-east-1
us-east-2

.appsync-api.eu-west-1.avsvmcloud.com

.appsync-api.us-west-2.avsvmcloud.com

.appsync-api.us-east-1.avsvmcloud.com

.appsync-api.us-east-2.avsvmcloud.com

The result is:

• The DGA Domain name generated is split into four random names and a DNS query is sent.
• The result of the query is compared again with the black and whitelists and, upon a successful check, the

CNAME and the VALUE (IP Address field) of the response will be tagged as “ext”, thereby transitioning to
the next phase.

• By analyzing the DNS traffic we noticed that Sunburst is not utilizing the TXT record in a manner
traditionally seen in other DNS tunneling tools or other malware such as Necurs.

• It uses the CNAME record and an efficient steganography, again to overcome the traditional network
forensics and packet inspection solutions.

• In addition, the backdoor is using the DGA in two distinctive phases.
• In the first phase it creates the pseudo-random subdomain,
• in the second phase it uses the method GetNextString to finalize the communication with its C2.

This second phase is executed through this procedure:

Figure 33: DnsRecords code related to the completion of the beacon stage

This mechanism shows the level of sophistication adopted by the attacker.

SUNBURST: DGA…

Collect the last three bytes of the System
time (Timestamp) expressed as:

yyyy-m-d h:m:s.

Calculate a circular XOR on the GUID with the
last three bytes of the Timestamp as the key.

Calculate a random key with high bit set and
encode it in base32.

https://github.com/RedDrip7/SunBurst_DGA_Decode
https://github.com/bambenek/research/tree/main/sunburst
https://twitter.com/RedDrip7

The communication routine of Sunburst is based on DGA (Domain Generation Algorithm) and every
victim has its own subdomains (based on internal names) that, once encoded, are unique.

• Department of Agriculture
• Department of Commerce
• Department of Defense
• Department of Energy
• Department of Health and Human Services
• Department of Homeland Security
• Department of Justice
• Department of State
• Department of the Treasury
• Administrative Office of the United States Courts

SUNBURST: details…

If we decrypt the Internal names, we can notice the
magnitude of the attack and some of its victims:

Per approfondimenti:

SUNBURST: Network Command and Control (C2)

Once the backdoor is actively managed, the attacker leverages on HTTP/HTTPs protocol.
This type of traffic is started with a delay, coded into the malware (minimum 60 seconds) to fool any network
monitoring tool.

From the pure traffic perspective the malware uses HTTP GETs, POSTs and PUTs:

The HTTP GET header «content-type» is configured as "application/octet-stream“
The HTTP POST header «content-type» is configured as "application/json"

Malware response messages sent to the server are DEFLATE compressed and single-byte-XOR
encoded, then split among the “Message” fields in the “steps” array.
Each “Message” value is Base64 encoded separately.

The POST JSON payload contains peculiar keys and some are designed to fool the network monitoring:

“userId”,
“sessionId”
“steps”

“Timestamp”,
“Index”,
“EventType”,
“EventName”,
“DurationMs”,
“Succeeded”,
“Message”.

The “steps” field contains a list of
objects with the following keys:

“EventType” is hardcoded
to the value “Orion”,

“EventName” is hardcoded
to “EventManager”

SUNBURST
backdoor

parameters

Command Value Operation

Idle 0 No operation

Exit 1 Terminate the current thread.

SetTime 2

Sets the delay time between main event loop executions Delay is in seconds, and varies random between

[.9 * <delay>, 1.1 * <delay>]. If the delay is < 300 it is doubled on the next execution through the loop,

this means it should settle onto an interval of around [5, 10] minutes. There is a second, unrelated

delay routine that delays for a random interval between [16hrs, 83hrs]

CollectSystemDescription 3
Profile the local system including hostname, username, OS version, MAC addresses, IP address, DHCP

configuration, and domain information.

UploadSystemDescription 4
Perform a HTTP request to the specified URL, parse the results and compare components against

unknown hashed values. Format a report and send to the C2 server.

RunTask 5 Starts a new process with the given file path and arguments

GetProcessByDescription 6
Returns a process listing. If no arguments are provided returns just the PID and process name. If an

argument is provided it also returns the parent PID and username and domain for the process owner.

KillTask 7 Terminate the given process, by PID.

GetFileSystemEntries 8 Given a path and an optional match pattern recursively list files and directories

WriteFile 9
Given a file path and a Base64 encoded string write the contents of the Base64 decoded string to the

given file path. Write using append mode. Delay for [1s, 2s] after writing is done.

FileExists 10 Tests whether the given file path exists.

DeleteFile 11 Deletes the specified file path.

GetFileHash 12
Compute the MD5 of a file at a given path and return result as a HEX string. If an argument is provided, it is

the expected MD5 hash of the file and returns an error if the calculated MD5 differs.

ReadRegistryValue 13 Arbitrary registry read from one of the supported hives

SetRegistryValue 14 Arbitrary registry write from one of the supported hives.

DeleteRegistryValue 15 Arbitrary registry delete from one of the supported hives

GetRegistrySubKeyAndValueNames 16 Returns listing of subkeys and value names beneath the given registry path

Reboot 17 Attempts to immediately trigger a system reboot.

• In general, from the pure technical explanation of the commercial software compiling mechanism,
any backdoored DLL would be identified during the commit phase and the subsequent automatic code
review stage if the attacker were not able to access and modify the source code.

• In addition, as we will present later, the malicious DLL is not just included in the software bundle, but
it is linked with other components, thus further confirming the hypothesis.

• In fact, to modify a piece of code or swap one DLL with another, is not enough for the backdoor to
work, the attacker was also forced to link it with other components, and that is possible only by
accessing these other components as well.

• As a blog on Reversing Lab analysis confirmed¹, the timestamps between the different components of
the SolarWinds suite are all aligned due to being controlled by a remote server that is outside of the
build environment that cannot be tampered with; this confirms the hypotheses about the access to the
development area by the attacker.

• For additional details and a complete review of the tools used in this attack you can read my white
paper posted on the RSA blog:

SUNBURST: technical considerations

¹ https://blog.reversinglabs.com/blog/sunburst-the-next-level-of-stealth

https://community.rsa.com/t5/rsa-netwitness-platform-blog/sunburst-solorigate-round-up/ba-p/594084

Let’s now check the other tools

The other tools: TEARDROP

TEARDROP, as its name anticipates, is a DLL dropper: a “Second Stage” which allows the attacker to
introduce additional malware, specifically CobaltStrike agents.
TEARDROP can be executed as a Service or at runtime.

During execution, the dropper spawns a thread and read a fake “.jpg” file before continuing the setup.
Technically, TEARDROP is not planned to carry out controls upon its running environment, as Sunburst
does. It is a simple Loader storing an encrypted PE payload that, when detonated, is loaded in memory.
The PE payload is a customized CobaltStrike agent that will beacon to specific domains such as:

• infinitysoftwares[.]com

• TEARDROP was found tightly connected with SUNBURST backdoor.
• Usually, in backdoored systems, the second stage was always TEARDROP.

Notably:

• the TEARDROP samples collected so far are not signed with a certificate.

TEARDROP: activation mechanism

TEARDROP: CobaltStrike agent drop

RAINDROP is another dropper used to disseminate CobaltStrike agents in the Sunburst campaign.

RAINDROP has some similarities with TEARDROP in terms of behaviors during its execution.
However significant differences can be highlighted:

RAINDROP is a DLL created from the source code of 7-zip, but it never executes 7-zip routines.
Upon execution, RAINDROP spawns a new thread, drops its payload and executes it.
At runtime it execute the following steps:

▪ It delays the immediate activation of its functions by calling additional tasks.
▪ Extract its payload (encrypted with AES in CBC mode).
▪ Decompress the payload (with LZMA compression algorithm).
▪ Decrypts its payload (XOR with byte key).
▪ Launch the payload in memory.

• RAINDROP samples are not signed with a certificate.

The other tools: RAINDROP

• In systems showing the presence of RAINDROP we didn’t found SUNBURST installed, while instead
it was present where we traced TEARDROP.

• RAINDROP uses a different packer to encrypt its payload.

RAINDROP: activation mechanism

RAINDROP: CobaltStrike agent drop

TEARDROP and CobaltStrike:

Looking to the third-phase of any Sunburst/Solorigate attack, we face now CobaltStrike agents.

Teardrop’s BEACON CobaltStrike’s BEACON

These agents different for any infection, but
they are showing some common traits:
▪ The agents are never installed by

Sunburst backdoor, but deployed using
TEARDROP or RAINDROP.

▪ They are written into a legitimate-looking
subfolder in %WinDir% (e.g., C:\Windows)

▪ They are keeping persistence on a victim
using a separate technique leveraging on
a VBS script.

▪ They are generated using Artifact Kit
templates of CobaltStrike as
demonstrated by Checkpoint and
Microsoft analyses.

Comparative courtesy of CheckPoint.

The other tools: SUPERNOVA

SUPERNOVA is an .NET webshell developed from a legitimate SolarWinds Orion DLL.

The modification carried out upon the original DLL is simple, but extremely effective.
Adding the method DynamicRun() in the class LogoImageHandler the attacker was able to transform
an harmless DLL into a sophisticated webshell.
The injected method is processed by the HTTP routine managing the requests to the FrontEnd of the
SolarWinds application, it allows the attacker to pass parameters mimicking an HTTP request.
Thanks to this trick, it is possible for the attacker to pass a block of C# code and ensure its execution
when intercepted by DynamicRun, which in turn will pass it to CSharpCodeProvider, a .NET class used
to compile code at runtime in memory.

• SUPERNOVA do not abuses vulnerabilities, but structural weaknesses of .NET environment
making it difficult to be spotted with a generic analysis.

SUPERNOVA differs from Sunburst on significant aspects:

• SUPERNOVA code is simple compared to Sunburst code
• SUPERNOVA implant was not included in the Orion release, but instead added by an intruder

after its initial attack.

• SUPERNOVA executable is not signed

Sunburst: Threat Intel

Our Threat Intel process

©2020 RSA Security, LLC., a Dell Technologies business

Analysis

C O N F I D E N T I A L

Collection, Classification & Analysis

• We started the task by collecting initial details of the breach from OSINT and enriched it with the outcome
of our Team IR analyses.

• The collection task was divided in four main areas:

• Malware IOCs

• Network IOCs

• Attacking Techniques

• Registrant analysis

• The classification associated each IOC to one or more clusters aiming to differentiate and evaluate the data
both as a whole and for its specific informational value. Under this process, another important parameter
was the “level of trust” of each IOC (the reliability of the IOC and the source who extracted it).

• The analysis aimed to evaluate the clusters and expand the hypotheses formulated starting with them to
confirm or dismiss one or more data conglomerates and to apply logic to clarify the confirmed hypotheses.

• The analysis is still ongoing, as we collect additional IOCs recently and because the Threat Intel is a
continuous process.

• However, we are also wrapping up a report that would be released as a white paper by RSA about the
outcome of this investigation.

©2020 RSA Security, LLC., a Dell Technologies business

Registrar and Hosting
providers

1# NETWORK IOCS ANALYSIS

C O N F I D E N T I A L

https://www.domaintools.com/resources/blog/change-in-perspective-on-the-utility-of-sunburst-related-network-indicators

One of the more interesting field of analysis, in Sunburst, is the Registrars.
Observing the attack and the IP/Domains associated and with the initial help of the excellent job of
Domaintools, we were able to cross-correlate two main elements:

Registrars Analysis

• Registrar
• Hosting Provider

The_DomainTools_Report_Distribution_Malicious_Domain.pdf

Registrars and Hosting providers Analysis
Considering the high usage of Namecheap for malicious
purposegwe can assume that this tendency is based on

multiple factors: starting from the high volume of
registered domain and arriving to the usage of services like
Whoisguard and their «peculiar resistance» to collaborate
unless intervention of law enforcment as other registrar of

same «kind»

spamhaus-botnet-threat-update-q2-2020

Let’s extend a bit our vision of the topic, by looking to Namecheap history…
On March 5, 2020, Facebook openly accused Namecheap and its Whoisguard proxy service, which manages
the privacy of registrants, of allowing users to register domains that fool people into believing they are
legitimate Facebook app domains¹.

¹ https://about.fb.com/news/2020/03/domain-name-lawsuit/

Registrars and Hosting providers Analysis

Namecheap reaction²

² https://uk.pcmag.com/social-networking/125155/facebook-sues-namecheap-over-domain-names-that-deceive

https://abcnews.go.com/Technology/wireStory/internet-firm-restricts-virus-themed-website-registrations-69825166
https://www.justice.gov/opa/press-release/file/1260121/download/

Registrars and Hosting providers Analysis

Another feud resolved with a federal
judge ordering takedown:

«Another one bites the dust»

Domain: coronavirusmedicalkit[.]com

From our perspective, it is easy to see how direct the connection from the registrar to the attackers
is when speak about Namecheap.
There are almost immediate matches, especially when we look to group potentially involved in the
Sunburst/Solorigate campaign.

APT28: New Zebrocy (support-cloud[.]life)

Registrars and Hosting providers Analysis

Another example related to a well-known malware like Dridex can be highlighted by an Infoblox report:

Registrars and Hosting providers Analysis

https://insights.infoblox.com/threat-intelligence-reports/threat-intelligence--19

We have seen how even sophisticated actors are attracted to this
type of registrar and one of the reasons is plausibly the guarantee of
privacy.

However, given the situation we looked to bind ATP-type actors or cybercriminals, with Registrants and we
walked this path in Sunburst/Solorigate case with interesting results…

A tortuous speech with many facets that we leave with pleasure to the
various disputes and law firms.

In order to continue the analysis starting from hypothesis that APT actors use Namecheap services we added
a new cluster to include the Hosting Provider.
In addition, thanks to this operation we cross-correlated services like Namecheap and Solarigate Hosting
Providers reported by the community.
This created an “adjacency”, a group of correlated information that permit new observations and inferences.
In fact, Among the various details we analyzed, we found a report from Area 1 report related to a phishing
campaign on Burisma Holdings:

Russian APTs Adjacency

https://cdn.area1security.com/reports/Area-1-Security-PhishingBurismaHoldings.pdf

After identifying the 7 domains registered on Namecheap and reported as linked with
Sunburst/Solorigate, we carried out specific analysis of the relationship between these domains,
the hosting providers and registrars.

Russian APTs Adjacency

Domain Host Provider Registrar Purpose

databasegalore[.]com MivoCloud SRL NAMECHEAP INC Possible Beacon C2

incomeupdate[.]com MivoCloud SRL NAMECHEAP INC Possible Beacon C2

webcodez[.]com M247 Europe SRL NAMECHEAP INC Unknown

The following domains, from the initial seven,
are showing the characteristics described in

the Area 1 report:

©2020 RSA Security, LLC., a Dell Technologies business

Operation Overtrap

ATTACKING TECHNIQUES

C O N F I D E N T I A L

Another adjacency has been found with a campaign called “Operation Overtrap” with the banking
trojan “Cinobi” targeting Japanese banking system.

The adjacency is highlighted by the fact that the highdatabase[.]com domain referred to the IP
139.99.115.204, in the period of the attack, was resolving also byte.inteleksys[.]com and the hostname
sales .inteleksys[.]com.

These domains are part of the Cinobi IOCs as reported by the TrendMicro and Niiconsulting.

Cinobi

Niiconsulting report of March
2020 about Operation

Overtrap highlighting the
presence of the

highdatabase.com domain and
the IP indicated as

Solarigate’s IOC

https://www.niiconsulting.com/Security_Advisories/Security_Advisory_Digest_March_2020_Edition_1.pdf

We have a further indication from AlienVault with respect to the indication of the IP to which is added an
information that we are going to verify, namely the Country:

Cinobi adjacency

OTX details about 139.99.115.204 Domaintools Hosting history highdatabase[.]com

The machine hosting the domains is an OVH VPS based in Singapore
and, considering the extent of the resolution of the domains to it, we
believe it possible that the same actor has access to this system to
direct the two campaigns.

We tried to verify possible intersections between the various TTPs used in the two campaigns.

Cinobi adjacency

From the TrendMicro report about
Cinobi, we noticed the network IOCs
related to C2s published in Onion.
This is interesting to narrow the
circle of groups of attackers who, in
the past, have used Onion for C2 or
who in general use Tor in their
attacks.

As we can notice, Russian threat actors are using
TOR/Onion in different flavors, but not many non-
Russian actors are using such techniques…
This is gold when we try to “decode” the actors
behind Sunburst as it seems the odds are pointing
to East Europe, more than any other direction…

©2020 RSA Security, LLC., a Dell Technologies business

Raindrop & Cobaltstrike

REGISTRANTS

C O N F I D E N T I A L

While we enriched this item with direct observation from our IR Team, we started the process from
Symantec report related to Raindrop and its IOCs.

Raindrop & CobaltStrike

https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/solarwinds-raindrop-malware

The update indicates a change in the domain and
coincides with the IP change which will then be linked

to the attack as IOC.

Looking at the history related to a domain linked to
Raindrop's C2, it was possible to identify the
registrant's email address.
As you can see from the figure, the registrant
changes or is obscured by privacy before the attack.

The figure shows the date of the IP change and the
update in respect to the data described above

Raindrop & CobaltStrike

Through a verification carried out at the site:
https://www.threatcrowd.org/email.php?email=sergey1313@gmail.com

it is possible to check the relationships of the domains with the mail account.

Through a survey related to the same account we clarified the role of our friend Sergey.
He is a reseller of domains…

https://mobility.mobi/showthread.php?30080-9-Premium-domains-at-floor-prices&p=104204#post104204

Looking for our friend Sergey…

Our conclusions are confirmed by Threatconnect.
This allows us to expand the perimeter related to
the bigtopweb[.]com domain by including other
domains with the same characteristics sold by
the same individual during spring and summer
2020:

https://app.threatconnect.com/auth/incident/incident.xhtml?incident=4617777768#/tasks

We reviewed the results through Domaintools comparing our findings with Threatconnect.

Peekaboo! Sergey…

With same procedure we was able to find other
adjacencies with other domains in our Collection such
as the one below:.

Conclusions

When we walk through a set of malware like this one, knowing the risk associated with their usage by

the hand of an attacker, you can feel a bit “naked”.

The Sunburst/Solorigate attack leverages on a trusted and widely used application, implemented for

pure monitoring. An application usually allowed to access Internet and allowed to poll systems in the

network, to test network ports and to inherit, for its role, several benign firewall and intrusion detection

rules.

We need to learn from this lesson, sophisticated attackers are always looking to opportunities like this

one to get the chance to break into a network undetected and enjoy a relative advantage point of not

raising suspicious alerts from their activities.

To avoid this risk, we need to develop a more coordinated mechanism enforcing additional controls upon

applications such as Orion and, as we are far from ensuring that bulletproof providers are kept at bay,

we need to push more attention to Threat Intel reports of such providers, as IR teams.

This is the only proactive way to reduce the window of exposure and the magnitude of breaches like this

one, from the “victim” perspective.

Conclusions

